Department of Mathematics					
Course Specific Outcome					
a 4	Paper	Name of the			
Semester	/Course	Paper/Corse	Course Outcome		
			Gain proficiency in calculus		
			computation and solve application		
			problems in a variety of settings ranging		
			from physics and biology to business		
	CC-1	Calculus	and economics		
			An ability to apply knowledge of		
Semester-			computing and mathematical		
1			foundations, algorithm principles, and		
-			computer science theory to the		
		Discrete	modelling and design of computer based		
	CC-2	Mathematics	system.		
			Understand the relationship between		
		CALCULUS AND	the derivative and the definite integral		
		DIFFERENTIAL	as expressed in both parts of the		
	GE-1	EQUATIONS	fundamental theorem of calculus.		
			Demonstrate an understanding of limits		
			and how they are used in sequences,		
	CC-3	Real Analysis	series, differentiation and integrations.		
			Learn the concept of differential		
			equation classify the differential		
Semester-			equation with respect to their order and		
2			linearity. Learn the meaning of		
		Differential	salutation of differential equation also		
	CC-4	equations	known existence and uniqueness.		
			Recognise technical terms and		
			appreciate some of the uses of algebra.		
	GE-2	ALGEBRA	Collect like terms and simplify		
			Lear Fundamental properties of the real		
		Theory of Real	numbers that lead to the formal		
	CC-5	functions	development of real analysis		
			Understand and use the term		
C			homomorphism and isomorphism also		
3 Semester-			use the concept of conjugation. Derive		
			the existence of groups of a specified		
	CC-6	Group Theory-I	small order.		
		Partial differential	By using partial differential equation		
		equations and	can solve modelling, the general		
	CC-7	system of ODEs	structures of solution analytic and		

			numerical methods for solution.
			Will able to reason, model and draw
			conclusion or make decision with
			mathematical, statistical and
			quantitative information. Also will be
			able to critique and evaluate quantitative
		Quantitative and	arguments that utilize mathematical,
	SEC-1	Logical Thinking	statistical and quantitative information.
			mathematical operations and tasks such
			as interpolations differentiation.
			integration, the solutions of linear and
			nonlinear equations and the solution of
		Numerical Methods	differential equations. Analyse and
		and Scientific	evaluate the accuracy of common
	CC-8	Computing	numerical methods.
			Demonstrate an understanding of the
			concepts of matric spaces and
			topological spaces, and their role in
		Topology of Metric	completeness connectedness and
	CC-9	spaces	convergence within this structures
Semester-			Validate and critically assess a
4			mathematical proof; use a combination
			of theoretical knowledge and
			independent mathematical thinking to
			investigate questions in ring theory and
	CC-10	Ring Theory	to construct proofs
			Demonstrate a basic understanding of
			computer hardware and software.
			Demonstrate problem solving skills.
			Apply logical skills to programming in a
			technologies Present conclusions
		Data Analysis and	effectively, orally and in writing.
		Computer	Demonstrate basic understanding of
	SEC-2	Application	network principles.
Semester-			Will know many different ways of
5			representing functions of several
			variables including algebraic formulas,
	ac 1 i	Multivariable	graphs, contour diagrams, cross
	CC-11	Calculus	sections, and numerical tables.

	CC 12		E-mlain the concept of here and
	CC-12		Explain the concept of base and
			dimension of a vector space, properties
			of vectors on the base, row and column
		Linear Algebra	space.
			Able to know quantitative methods
			used in decision making, explain the
			applications, constructs linear
			programming models, known
	DSE-1	Linear Programming	transportation model
			Demonstrate the concepts of factorial
			and the basic principal of counting
			and the basic principal of counting,
		Brobability and	Known permutation, combination and
			Binomial theorem known the concept of
	DSE-2	Statistics	a random event.
			Define the concepts of derivation of
			analytic functions. Define the concept of
			sequences and series of the complex
			functions known concepts of
			convergence sequences and series of the
	CC-13	Complex analysis	complex function.
			Precise and accurate and mathematical
			objects in ring theory. Known
			irreducibility of higher degree
			polynomial over rings. Use a
			combination of theoretical knowledge
			and independent methometical thinking
	CC_{14}		and independent matternatical timiking
C (CC-14		to investigate questions in ring theory.
Semester-			Analyse the equivalence of two curves
6			by applying some theorems express
			definition and parameterization of
			surfaces. Express tangent spaces of
			surfaces. Explain different maps
		Differential	between surfaces and find derivatives of
	DSE-3	Geometry	such maps
			Understand the foundations of
			mathematics. Be able to perform basic
			computations in higher mathematics.
			Develop and maintain problem solving
			skills Be able to write and understand
			hasic proofs Have experience using
			technology to address mathematical
	DCE 4	Project	ideas
	DSE-4	Project	lueas.